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White Paper

Finite Element Analysis of Braided Corrugated Hoses  
with Multiple Layers of Individual Braid Wires Using  
an ANSYS Implicit Solver  

This white paper demonstrates the ANSYS® implicit software package is robust for performing 
finite element analysis of multi-layered braided corrugated hoses. This paper outlines the 
methodology for creating and analyzing three-dimensional finite element hose models consisting  
of an inner metallic corrugated tube or flexible bellows which is surrounded by either a single 
braid layer or multiple braid layers of helically wound, circular, individual metallic wires.  

Introduction
While explicit solvers have been used to analyze corrugated braided 
hoses with only a single layer of braid wires, the ANSYS implicit solver 
can perform finite element analysis of braided corrugated hoses with 
multiple layers of braid wires. An implicit solver can perform both static 
and transient analyses. In general, implicit solvers provide more accurate 
solution and solve static or quasi-static analyses more efficiently than 
explicit solvers. Read this white paper to learn the detailed physics of 
braided corrugated hoses, as well as the challenges that engineers face  
in designing them for specific applications. 

Current State of the Art Regarding Finite Element Analysis  
of Metallic Braided Corrugated Hoses 
Until recently, stress analysis of braided corrugated hoses has been 
performed primarily using hand calculations, experimental test data  
and computer programming. Some flexible hose analysts follow the  
design guidelines presented in the EJMA Standard, published by the 
Expansion Joint Manufacturers Association, Inc. EJMA is an association  
of manufacturers of metal bellows type expansion joints. Their website  
http://www.ejma.org/ states that they “carry out extensive technical 
research and testing on many important aspects of expansion joint  
design and manufacturing.” 

Over the years, a number of papers and theses concerning analysis 
of expansion joints have been published. Many of those papers were 
published before finite element analysis software became widely available.  
Some of the earlier papers concentrated on analyzing one portion of a 
system instead of analyzing an entire assembly of components. Analysis of 
U-Shaped Expansion Joints(1) which was published during 1962 describes 
“An elastic analysis of U-shaped expansion joints under axial loads and 
internal or external pressure is presented. The general solution permits  
the investigation of any U-shaped expansion joint falling in the range 
of thin shells, for any arbitrary combination of axial forces and pressure 
loading.” Furthermore, the paper states, “The method presented here lends 
itself readily to programming on an electronic computer.”

http://www.ejma.org/
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This paper is useful for performing an analysis of U-shaped expansion joints, which is basically  
what a corrugated tube is. Unfortunately, the methods discussed do not extend to analysis of  
braided corrugated hoses with single or multiple layers of braid wires. Unless the wall thickness of a 
corrugated tube is sufficiently thick, at some point the bellows will excessively stretch, deform, and 
squirm. Adding multiple layers of braid wires to a corrugated tube or bellow extends the range of  
axial loads and pressure which can be sustained before bellows failure occurs. The analysis methods 
presented in Analysis of U-Shaped Expansion Joints are limited to analyzing a U-shaped expansion  
joint at a relatively low pressure and corresponding axial hose pressure force. Those methods are  
also restricted to geometrical shell thickness limits. 
 
Even within the past several years, instead of analyzing flexible corrugated hoses with multiple  
layers of braid wires and treating each braid wire as an individual component, some analysts (2) 
modeled picks of parallel braid wires as “ribbons” of wires with composite material properties.  
By modeling a grouping of wires as a ribbon, each wire within a ribbon is essentially bonded or  
welded to its neighbor. In the real world, individual braid wires slide and flex freely relative to  
each other. That’s why it’s important to be able to perform finite element analysis of braided 
corrugated hoses where each braid wire is modeled as an individual three-dimensional  
component which can move independently.

During 2015, Djihad Rial, Amine Tiar, Kebir Hocine, Jean-Marc Roelandt and Eric Wintrebert authored 
Metallic Braided Structures: The Mechanical Modeling(3) documenting their finite element analysis 
results of “a micro-scale model where each metallic wire is considered an independent three-
dimensional structure.” 

Rial et al, used an explicit type finite element analysis solver.  Explicit solvers utilize a "dynamic" 
or time-domain type of solver. They evaluated several different braided corrugated hose modeling 
techniques and compared their finite element analysis results with experimental test data from 
elongation and pressurized hose tests.

The following quotation is from Metallic Braided Structures

“… several finite element approaches were developed and compared with the experiment, which are: 
a micro-scale model where each metallic wire is considered as an independent three-dimensional 
structure, a meso-scale model where each group of wires was modeled as a continuum material with 
equivalent mechanical behavior, and a macro-scale model where the whole structure is considered 
as a fully homogeneous material. And it is shown that the homogenization is more suitable for small 
displacements but for complex behavior the meso- and the micro-scale models are more reliable.” 

A continuum model is basically a “composite” model, whereby composite material properties are 
assigned to a collection of components, typically to simplify finite element model creation and 
analysis. The resulting stress, strain, force and moments from a continuum hose model are less 
accurate than those obtained from a three-dimensional micro-scale model of a braided corrugated  
hose with individual braid wires.
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Flexible Braided Corrugated Hose Design 
Braided corrugated hoses are used in many applications, including plumbing, industrial, automotive 
and aerospace/rocket applications. Braided corrugated hoses have an internal, semi-flexible, metallic 
corrugated tube or bellows, which is surrounded by either a single layer or multiple layers of metallic, 
individual braid wires. The braid wires are grouped into picks, which are bundles of parallel wires 
which follow alternating helical, CW and CCW paths. The metallic corrugated tube provides flexibility, 
allowing the braided hose assembly to compress, elongate, bend and flex. 

Hose connection fittings which are often threaded, are welded to both ends of a typical hose assembly. 
Hollow, concentric sleeves, which are overlapping collars, surround the ends of the braid wire tips. 
The ends of the braid wires are welded to the ends of the corrugated tube and to the weld collars. 
Then the hose connection fittings are welded to the weld collars. The ends of a hose assembly are 
extremely stiff compared to the rest of the more flexible, braided corrugated section.

Braid wires protect the flexible corrugated tube from external scuffing and abrasion. Additionally, 
the braid wires are intended to prevent a pressurized hose failure mode which is called “squirm.” 
Whenever a braided hose is over-pressurized, the corrugated tube bellows can elongate and a portion 
of the bellows can squirm, bulging and pushing aside the braid wires. When squirm occurs, the 
bulging portion of a bellows can burst. Hose manufacturers specify safe operating pressure limits so 
that squirm does not occur within normal operating pressure limits. A manufacturer’s hose operating 
pressure rating is typically established by pressurizing a hose until it bursts and then dividing the 
burst pressure by four.

Finite Element Analysis Modeling Considerations
Modeling and “contact” finite element analysis of braided corrugated hoses is extremely complicated. 
Wires within a pick contact adjacent wires. Wires within a braid layer contact wires in adjacent braid 
layers. And wires within the innermost braid layer contact the curved crest surfaces on the outside 
of the corrugated tube. Wire-to-wire sliding between picks and wire-to-tube sliding involves friction. 
Friction and contact are both non-linear, finite element analysis modeling phenomena. As the braid 
wires stretch and elongate, their material properties can also behave nonlinearly, becoming more 
elastic or possibly even elastic-plastic. Braided hose contact finite element analysis is extremely 
nonlinear and difficult to model. It’s also computationally expensive. 

The diameters of the braid wires and the wall thickness of the corrugated tube are very small in 
comparison to the axial hose length. For performing contact finite element analysis, it’s best to 
incorporate at least two mesh elements “through” the thickness of the corrugated tube wall.  
Multiple mesh elements are also required across the diameter of each braid wire. The meshes  
for the corrugated tube and the braid wires require a very large number of nodes and elements.  
Large finite element models with lots of nodes and elements take a long time to solve.
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Figure 1. Two mesh elements through the corrugated tube wall thickness

Figure 2. Beam mesh elements –  Each circular beam segment contains 16 mesh elements

Although the braid wire beam elements have a circular cross-section, ANSYS displays these  
circular beam elements with an octagonal outline.
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Figure 3. Circular beam and mesh elements are graphically displayed by ANSYS using an octagonal outline.

Using the “esurf” command, ANSYS inserts a layer of contact surface elements between contacting 
beams and between beams and contact surfaces. These specialized contact surface elements perform 
a number of functions. One of their main functions is to keep track of the distance between nearby 
element surfaces, as they approach, come into contact, and separate from each other. Whenever 
the contact status changes, additional load step iterations are required before the step converges 
satisfactorily. These additional “contact status change” iterations significantly increase the 
computational time required for analysis. 

During a FEM load iteration step, whenever two objects or surfaces contact each other, they could 
potentially “pass-through” or “tunnel-through” each other. Physically, wires can’t pass through other 
wires. Nor can metallic wires pass through a metallic corrugated tube. But this phenomenon could 
occur during a finite element (mathematical) model simulation. To prevent pass-through or tunneling, 
penalty-based contact elements (acting as springs) are employed to inhibit excessive contact 
penetration. These contact elements only exist mathematically. They do not have any mass or weight. 
It’s important to be aware that the esurf surface mesh layer cannot be displayed graphically by the 
ANSYS GUI. 

A slight amount of contact interference or penetration is required for the penalty method to function. 
Good finite element analysis modeling techniques result in a minimal amount of surface-to-surface 
penetration under load. If the load step is large enough, or if the load step is applied too quickly, 
then individual beam elements could:  pass-through other beams; pass-through the corrugated tube;  
or severely distort the corrugated tube mesh, crushing and collapsing it. The following figure shows 
several wires which passed-through other wires and through the corrugated tube crests.
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Figure 4. Wire “pass-through”

Braid Diameter O.D. Modeling Considerations
When the innermost layer of braid wires maintains line-to-line contact with the outside diameter of 
the corrugated tube crests, the theoretical minimum outside diameter (TMOD) of a single braid layer  
is equal to the corrugated tube outside diameter plus four times the nominal braid wire diameter.  
Due to manufacturing tolerances and variances in braid wire carrier tensioning, the actual braid 
outside diameter (ABOD) will likely be larger than this theoretical minimum value. ABOD is a critical 
geometrical braid weave modeling dimension or parameter, affecting the steepness/smoothness of the 
undulating braid profile. The following figures shows a single layer of braid with alternating CW and 
CCW picks crossing over two consecutive picks then crossing under two consecutive picks.

Figure 5. Single braid layer with 2-over and 2-under braid weave pattern
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Helical Braid Generator Software Packages
There are several commercially available helical braid generator software packages. 

TexMind Software

According to the TexMind website,  http://texmind.com/wp/, “TexMind BraiderTM is an intuitive CAD-
Software for colour and structural design of standard tubular and flat braids.” Although the TexMind 
website advertises “Software and Consulting for Textiles,” the TexMind Braider software package 
can also generate small diameter, metallic braid weave wire geometry. The TexMind software exports 
braid geometry into several finite element analysis software packages.

GiD Software

“GiD https://www.gidhome.com/ is a universal, adaptive and user-friendly pre and postprocessor for 
numerical simulations in science and engineering.”
  
According to A CAD Tool for Electromagnetic Modeling of Braided Wire Shields(4) GiD has a module with a 
graphical user interface for creating “braided wire CAD geometry.” 

One of the input variables within the GiD graphical user interface (GUI) λmedium, specifies the “distance 
between carriers.” This is equivalent to specifying the distance between “crossing” braid wires. So, 
while using the GiD graphical user interface, an analyst could theoretically specify line-to-line contact 
between braid wires or a specific amount of clearance between picks of crossing wires.

From the web-based document, A Finite Element Tool for the Electromagnetic Analysis of Braided 
Corrugated Shields(5) “input values for specifying a smoother or steeper ascent/descent of the wires” can 
be specified from the GiD user interface. 

According to A Finite Element Tool

 “A previous step before starting with the numerical analysis is to generate a CAD geometry  
 representing the braided wire shield. In our case, this task is performed with a Tcl/TK plug-in  
 integrated in the pre-processor software GiD.” 

This plug-in module essentially creates a small portion of the geometry for two picks of crossing braid 
wire sets which is referred to as a “unit cell.” From A Finite Element Tool “the full braided geometry 
is generated after rotating the unit cells in the transversal planes and translating them along the 
longitudinal axes.”

The unit cell contains a small snippet of braid wire geometry. This repeatable snippet of geometry is 
copied and rotated around the longitudinal axis, and then shifted axially, as many times as required 
in order to create a full complement of braid wires.

http://texmind.com/wp/
https://www.gidhome.com/
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A Finite Element Tool states “The parameter λC determines the maximum vertical (transversal) 
distance between carriers… an estimation of this parameter has to be made based on the other braid 
parameters such as weave angle, strand diameter and braid diameter.” 

It appears that while using the GiD plug-in, an analyst would specify a desired value for λC. Then it 
appears to be necessary to visually inspect the resulting three-dimensional CAD geometry to make 
sure that none of the braid wires have interpenetrated each other. If the resulting three-dimensional 
CAD representation indicates wire-to-wire interpenetration, the analyst would need to enter another 
value for λC and repeat this process as many times as required until satisfied with the resulting  
CAD geometry.

Regarding the two web-based documents which were just mentioned, the expression λC is equivalent to 
λmedium which is the distance between (braid wire) carriers. It’s important to understand that when 
an analyst uses the GiD graphical interface and enters a specific value for λmedium that it may not be 
possible for the software to create a unit cell using that specific value because the value for λmedium  
is dependent on other input parameter values. The significance of λmedium which is the distance 
between carriers or the distance between crossing wires will become clearer after reading the  
next section.

Universal Helical Braid Wire Generator Software
The author of this white paper created a "universal" helical braid wire generator software package for 
creating alternating helical braid wire profiles. The generator creates continuous smooth braid profile 
wire paths as well as steeper, linear or "kinked" wire profiles. 

Figure 6. Smooth and kinked braid weaves with 2 wires-per-pick

The braid generator software outputs a series of consecutive X, Y, and Z data points in 3D space, 
tracing the helical paths for the centerlines of individual braid wires. Then, a circular cross-section 
is extruded along the entire length of each braid wire path or profile, creating a quasi-smooth 
braid weave solid model. The braid generator software acts like a pre-processer for a CAD modeler. 
Alternatively, the generated data points can be imported directly into a finite element analysis 
modeler, which would then be used to create the individual braid wire extrusions.
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For finite element modeling purposes, a smooth, continuous, braid weave profile is preferred over a 
linear/kinked wire path. If the braid weave wire profile is too steep or linear, then the FEA wire mesh 
elements may contain sharp facets or discontinuities. Sharp mesh facets can result in troublesome 
residual force hotspots during finite element analyses, causing simulations to terminate prematurely.

The author's braid generator software creates helical braid wire paths. This software allows an analyst to 
specify a minimum distance between crossing wires. Line-to-line contact between crossing wires can 
also be specified. When line-to-line contact is specified, none of the crossing wires will penetrate each 
other. Some of the crossing wires will result in line-to-line contact while other nearby crossing wires 
will have a very slight amount of clearance between them. It’s not possible for all of the crossing wires 
to be line-to-line. 

The following spreadsheet image shows line-to-line contact with 5 decimal places accuracy between 
“Pick No. 2 – wire L2 and Pick No. 1 – wire L2” and also between “Pick No. 4 – wire R2 and Pick No. 
1 – wire R2.”  The maximum clearance between crossing wires = 0.00173”. The average clearance 
between all crossing wires is approximately 0.001”.

Figure 7. Distances between crsossing braid-wire centerline

This figure shows two crossing wires with line-to-line contact while nearby crossing wires have a 
minimal amount of clearance.

Figure 8. Line-to-line contact and slight clearance between nearby crossing wires
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The following figures illustrate line-to-line contact for crossing wires and line-to-line contact for 
parallel wires within a pick of braid wires. Notice that each wire end within a pick is intentionally 
staggered axially. 

Figure 9. Line-to-line contact between crossing wires and parallel wires

Mathematically, if any of the braid wire geometries initially penetrate each other, which could 
possibly occur from a model which was incorrectly generated, either by mathematical modeling or 
from 3D CAD, then the FEA contact model would not be able to initialize properly. For contact finite 
element analysis, it's extremely important that the helical braid wire generator software ensures line- 
to-line contact between parallel and crossing braid wires or some amount of clearance between them. 

The author's braid generator software employs “skew line” mathematical calculations between the 
centerlines of crossing wires. Using an iterative, bi-section modeling technique, the braid weave 
profile paths are automatically adjusted to obtain line-to-line contact or to provide a specific 
minimum amount of clearance between crossing wires. 

As mentioned earlier, the universal braid generator outputs a series of consecutive X, Y, and Z data 
points in three-dimensional space. ANSYS WorkbenchTM imports these data points and creates curves 
connecting the data points. A circular profile is then extruded along the curve centerlines, creating 
a quasi-smooth, braid weave solid model.  Since the underlying helical wire curves are composed of 
discrete points, each section of braid wire geometry between any two data points is essentially a  
line segment. 

“Two non coplanar lines are called skew lines if they are neither parallel nor intersecting. For skew lines, 
the direction of shortest distance is perpendicular to both the lines.”(6)

The shortest distance between any two skew lines can be determined mathematically by solving 
vector equations. The author’s helical braid generator software calculates the shortest distance 
between all of the crossing braid wire line segments.  By subtracting the braid wire diameter from the 
skew line distances, the braid generator software automatically determines the amount of clearance 
or interference between crossing wire line segments. 
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A Visual Basic macro within the braid generator software can automatically adjust the value of the 
exponent b in the following formula y = a * √(xb) + radlowest

Where:

 y = radial distance from the hose axial centerline 

 x = axial distance from the start of the braid weave cycle 

 a = radial “height” scaling factor for one-quarter cycle, 

  a = (radmiddle - radlowest)/ √[(xpointNo8)
b]

 radlowest = corrugated tube outside radius + braid wire radius

 radmiddle = radius at mid-point of total radial rise

 xpointNo8 = axial distance for braid Point No. 8 from the start of the braid weave cycle

 x0 is the first x value

Note: when x = xpointNo8, y = radmiddle

By design, some of the crossing wires between braid wire picks will be line-to-line while nearby 
crossing wires will have some minimal amount of clearance between them. This guarantees that  
none of the braid wires will initially interpenetrate each other geometrically when the finite element 
analysis begins. An additional benefit of a tight braid weave is that it reduces chatter which can occur 
whenever the “contact element status changes” during finite element analysis.

The formula y = a * √(xb) + radlowest is used only for the first quarter of a 360° helical cycle. For the next 
quarter cycle, the values for the y increment are mirrored about the midpoint of the total radial rise. 
This process is repeated for the third and fourth quarter cycles, creating a smooth, continuous braid 
weave profile.
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Figure 10. 360° braid weave profile – for 1st quarter cycle where y = a * √(x9) 

By changing the value for parameter b in the formula y = a * √(xb)  the “linear ascent/descent” or 
steepness of the braid weave profile can be adjusted to mimic the range of profiles shown in the 
following figure. When b ~ 1.875, the braid weave profile is similar to a saw-tooth profile. The 
steepest braid weave profile occurs when b ~ 40. Smooth profiles occur when b is between 2 and 14.  
As the parameter b increases, the curve profile becomes steeper. Steeper braid profiles allow more 
wires to be packed into a braid layer. 

Figure 11. 360° helical braid weave profiles
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A schematic of the author’s helical braid wire generator algorithm is shown in Figure 12. After 
entering the input parameters, the analyst manually selects and adjusts the value for the parameter  
b until visually satisfied with the steepness or smoothness of the radii curve profile. 

If line-to-line contact or satisfactory clearance results, a macro can automatically output the X, Y and Z 
data point files. 

If line-to-line contact does not occur or if the clearance between crossing wires is not satisfactory, 
there are two options: 

 1) Increase the value of the actual braid outside diameter, ABOD, which was discussed  
  previously. Either the analyst can manually input a new value for ABOD or a macro can be  
  used to automatically determine the optimum value so that line-to-line contact occurs  
  between crossing wires.

 2) Either manually input a new value for b or use a macro to automatically determine the  
  parameter b which results in line-to-line contact between crossing wires or a minimum amount  
  of clearance specified by the analyst. 

Figure 12. Universal helical braid wire generator 
software algorithm schematic
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The author’s helical braid generator uses symmetry concepts which are similar to the unit cell method 
discussed in A CAD Tool for Electromagnetic Modeling of Braided Wire Shields(4) and A Finite Element 
Tool for the Electromagnetic Analysis of Braided Corrugated Shields.(5) Instead of using the unit cell 
method, the author’s braid generator rotates each braid wire within a pick around the hose axis and 
shifts each wire axially relative to its adjacent neighbor. The universal braid generator software uses 
helical angular rotation about the hose axis as the main driving mathematical formula. Although this 
is slightly more complicated than a unit cell method, the main benefit is that skew line mathematical 
calculations can be implemented by the braid generator software to enforce line-to-line contact of 
crossing wires, preventing geometrical wire-to-wire penetration.

ANSYS Software
For the forced deflection elongation models and the pressurized hose finite element models 
documented within this paper, the author utilized ANSYS Academic software. The maximum number  
of components which can be created using an ANSYS Academic license is limited to 50 components.  
The corrugated tube geometry is split into two components along the hose longitudinal axis. All the 
models created using the ANSYS Academic software are limited to a maximum of 48 individual braid 
wire components. 

As an “ANSYS Associate,” the author previously had temporary access to ANSYS Professional software 
and one HPC pack. ANSYS Professional was used to create longer hose models with more wires per 
braid layer than those which are documented within this white paper. During that time frame, larger 
finite element models with more wires did not converge satisfactorily due to residual force tolerance 
issues. Those residual force tolerance issues have been overcome and the modeling techniques which 
were used to overcome them will be discussed later in this paper.

Nomenclature: Parallel and Crossing Beams

 Parallel wires within a pick of braid wires are bundled parallel to each other 

 Crossing picks of braid wires cross each other at an angle

Figure 13. Illustration of two picks of crossing wires containing 5 parallel wires-per-pick
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KEYOPTS (for 3D line contact element CONTA177)
KEYOPT commands allow an analyst to specify contact options which may or may not be available 
directly through the ANSYS GUI. 

KEYOPT(3) specifies the type of traction based model to be implemented by ANSYS for contact.

 KEYOPT(3)=2  Parallel and crossing beams contact traction-based model

 KEYOPT(3)=3 Crossing beams contact traction-based model

In order to prevent beam-to-beam penetration for both “parallel and crossing beams” ANSYS created 
KEYOPT(14)=1 and KEYOPT(14)=2. 

 KEYOPT(14)=1, Parallel or crossing beams 

  Option 1 keeps track of up to 4 (parallel or crossing) beam contacts 

 KEYOPT(14)=2, Parallel or crossing beams

  Option 2 keeps track of up to 8 (parallel or crossing) beam contacts 

Figure 14. shows beam elements which are simultaneously “parallel and crossing.” Four of the beam 
elements are parallel to each other and one beam element crosses the other four.

Figure 14. Illustration of KEYOPT(14)

Note: 

 KEYOPT(3)=2  Parallel and crossing beams contact traction based model should also be  
   used whenever KEYOPT(14) is specified

For single, dual and triple braid layer models analyzed using ANSYS Academic, all the models contain 
48 braid wires with as many as 4 wires-per-pick. KEYOPT(14)=1 was sufficient to prevent excessive 
beam-to-beam penetration for models with 4 wires-per-pick. Using KEYOPT(14)=2 doubled the time 
for solving the models without offering any noticeable benefit. KEYOPT(14)=2 might be useful for 
analyzing braided corrugated hose models containing more than 4 wires-per-pick.
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Method for Creating Braided Corrugated Hose Models 
The corrugated profile for one-half of the tube is created using ANSYS WorkbenchTM. The U-shaped 
corrugation profile is revolved 180° around the hose axis centerline. Then a mirror copy of the half-
tube is created. 

Picks of braid wire X, Y, and Z data point curves are imported into ANSYS WorkbenchTM. The ends of 
the braid wires are shifted axially to align with the ends of the corrugated tube. A circular profile is 
extruded along each braid wire curve. Additional picks of extruded braid wires are then copied and 
rotated as required. This method of “copying and rotating” picks of wires is similar to the unit cell 
approach employed by the GiD software. 

Corrugated Tube and Braid Wire Dimensions and Materials
The materials and dimensions for the corrugated tube and the braid wires are shown below.

Material

Corrugated Tube Stainless Steel 0.012 1.20 0.375/0.590

Braid Wires Stainless Steel 0.016 1.20 N/A

Inside/Outside  
Diameter (in)

Axial Length 
(in)

Wall Thickness  
or Diameter (in)

TABLE 1.  Corrugated Tube and Braid Wire Dimensions and Materials

The ANSYS default stainless steel material properties (30,458 psi yield stress) were used for axial 
hose elongation, tip deflection and tri-axial deflection models. For the pressurized hose models,  
316 stainless steel material properties (42,100 psi yield stress) were used. 

Mesh Generation
For the corrugated tube, a sweep method was used to create a linear quad solid element mesh.  
Two mesh elements were specified through the wall thickness of the corrugated tube. Mid-side  
nodes were not activated. The mesh length was specified for the braid wires.
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Named Selections
Named selections are created using the ANSYS WorkbenchTM GUI so that bodies, faces and node sets 
can be specified later. The named selections are subsequently used to specify contact element pairs 
within ANSYS command scripts. 

An example of a named selection is shown in the following figure. The named selection “End_Z_1pt2_
inner_braid” is a set of braid wire nodes. This node set is used to bond the ends of the inner braid 
wires to the end of the corrugated tube, simulating a welded connection.

Figure 15. Named selection End_Z_1pt2_inner_braid

ANSYS Command Scripts
ANSYS command scripts are created for specifying

1) attachment/bonding of the braid wire ends to the ends of the corrugated tube 

2) beam-to-beam contact within braid layers

3) beam-to-beam contact between adjacent braid layers

4) beam-to-surface contact between the innermost braid layer and the corrugated tube crest surfaces
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In order to obtain convergence and to minimize beam pass-through, it was necessary to conduct 
a very time consuming trial-and-error method to test various combinations of KEYOPT contact 
parameters. Smaller finite element models, with fewer braid wires were initially tested to minimize 
computer run time.

Significant KEYOPTs used in the ANSYS command scripts are shown in the following table:

Contact Algorithm
Augmented Lagrange 

Penalty
Internal multipoint constraint

Lagrange multiplier on contact normal
Pure Lagrange multiplier on contact normal and penalty on tangent

KEYOPT(2)=0
KEYOPT(2)=1
KEYOPT(2)=2
KEYOPT(2)=3
KEYOPT(2)=4

Table 3. KEYOPT(2) Options

Beam Ends to  
Tube Ends

Inner Braid
Beam-to-Beam

Outer Braid  
Beam-to-Beam

Outer Braid to  
Inner Braid

Inner Braid  
to Tube

Contact

Target

Contact Algorithm

Bonded

“Parallel or crossing,” up to  
4 contact sets specified

External contact between 
parallel beams

Parallel and/or crossing 
beams traction

Contact Force

 175 177 177 177 177

 170 170 170 170 170

Penalty
KEYOPT(2)=1

KEYOPT(14)=1

KEYOPT(9)=0

KEYOPT(3)=2 KEYOPT(3)=2 KEYOPT(3)=2

KEYOPT(3)=0

KEYOPT(9)=0 KEYOPT(9)=0

KEYOPT(14)=1 KEYOPT(14)=1

KEYOPT(12)=5

Penalty
KEYOPT(2)=1

Penalty
KEYOPT(2)=1

Lagrange Multiplier
KEYOPT(2)=3

Table 2.  Selected KEYOPTs for Finite Element Models with Two Layers of Braid Wires

There are five ANSYS KEYOPT(2) contact algorithm options to choose from.
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The penalty and the Lagrange multiplier contact algorithms were found to work best for obtaining 
convergence of both axial elongation and pressurized hose models. 

The penalty method uses a contact spring to establish a relationship between two contact surfaces. 
The spring stiffness is called the contact stiffness. This method uses the real constants: FKN and FKT 
for all values of KEYOPT(10), plus FTONL and SLTO if KEYOPT(10) = 1 or 2.

No. Name  
  3 FKN Normal penalty stiffness factor  0.70
  4 FTOLN Penetration tolerance factor -0.001
12 FKT Tangent penalty stiffness factor  0.01
23 SLTO Allowable elastic slip Automatic/default
24 TNOP Maximum allowable tensile contact pressure Automatic/default

Real Constants Description
Values implemented for Lagrange 

multiplier contact algorithm 
KEYOPT(2)=3

Table 5. Real Constants Implemented for Penalty Contact Algorithm KEYOPT(2)=3

Description
Contact stiffness variation – aggressive

Normal contact stiffness – updated at each iteration
Contact stabilization damping – activated for all load steps 

KEYOPT No.
KEYOPT(6)=2
KEYOPT(10)=2 
KEYOPT(15)=2

Table 6. KEYOPTS Implemented within Many of the ANSYS Command Scripts

No. Name  
  3 FKN Normal penalty stiffness factor 0.10
  4 FTOLN Penetration tolerance factor Automatic/default
12 FKT Tangent penalty stiffness factor 0.01
23 SLTO Allowable elastic slip Automatic/default

Real Constants Description
Values Implemented for penalty 
contact algorithm KEYOPT(2)=1

Table 4. Real Constants Implemented for Penalty Contact Algorithm KEYOPT(2)=1

Note: TNOP defaults to the force convergence tolerance divided by contact area at contact nodes.  

Additional KEYOPT settings are shown in Table 6.

The Lagrange multiplier method is applied on the contact normal and the penalty method (tangential 
contact stiffness) is applied on the frictional plane. This method enforces zero penetration and allows 
a small amount of slip for the sticking contact condition. It requires chattering control parameters, 
FTONL and TNOP, as well as the maximum allowable elastic slip parameter SLTO.
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Table 8. ANSYS Analysis Settings

 Description Option selected
 Analysis type Static
 Non-linear geometric effects On
 Equation solver option Sparse
 Elastic material properties included Yes
 Newton-Raphson option Program chosen
 Globally assembled matrix Symmetric
 Nonlinear stabilization On (constant)
 Stress-stiffening On
 Weak springs On

Material Property Description Value Implemented
Mp, mu, mt 0.25 Coefficient of friction  0.25

Table 7. Material Property Value Utilized for Coefficient of Friction

The “sweet spot” for contact friction values was determined by trial-and-error to between 0.10 and 
0.25. Friction values beyond this range sometimes caused convergence problems such as contact 
“chattering” or longer computer run time. A friction value of 0.25 was utilized for all finite element 
models documented in this paper.

The following table shows ANSYS analysis setting options implemented so that models  
converge satisfactorily.
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Deflection (Axial Tension) Finite Element Models
Deflection finite element models with single, dual, and triple layers of braid wires (containing a 
total of 48 wires per model) were analyzed. For the dual and triple layer FEMs, the forced deflection 
magnitude was increased until either:
1)  Braid wires passed-through the corrugated tube
2) Braid wire mesh and/or the corrugated tube mesh collapsed or imploded

For the single braid layer finite element model, when a forced deflection of 0.5 inch was applied, the 
braid wires still did not pass-through the corrugated tube. Since the original hose length was 1.2 
inches long, 0.5” deflection corresponds with a strain rate of approximately 42 percent. For stretching 
of this magnitude the braid wire material properties moved into the elastic-plastic range.  

The single braid layer finite element model can stretch beyond 0.500”. The dual braid layer finite 
element model can stretch up to 0.156” before the innermost braid wires pass-through the  
corrugated tube bellows. The triple braid layer model stretches 0.125” before excessive wire-to-tube 
penetration occurs.

Examination of the axial forces from the models containing multiple braid layers shows the innermost 
braid layer carries a substantially larger axial force per wire than subsequent braid layers. The 
resulting axial forces in the innermost braid layer wires are the highest, followed by those in the 
second and third braid layers.  

ANSYS deflection videos show that when hose axial tension deflection first begins, the innermost 
braid layer quickly compresses against the corrugated tube crests. As additional axial hose elongation 
occurs, the second layer of braid wires compress against the innermost layer of braid wires. And as 
further axial hose deflection takes place, the third braid layer wires compress against the second layer 
of braid wires. 

Although it may seem intuitive, the braid-wire-to-tube-crest radial compression is initially the 
severest at the midpoint of the hose. As hose elongation increases, the radial compression zone 
expands axially. 

The wires within the innermost braid layer carry the largest axial forces compared to the other 
layers. At extreme hose pressure limits, the innermost braid layer wires carry a significantly larger 
percentage of the total axial wire forces.

FEM Description Single  Layer Two Layers Three Layers
 Total No. of braid wires 48 48 48
 No. of picks per braid layer 12 12 16
 No. of wires-per-pick 4 2 1
 No. of braid layers 1 2 3
Input(1) Hose axial deflection (limit) 0.500”  0.156” 0.125”
Output Reaction force  611 lbf 214 lbf 154 lbf

 Hose axial stiffness  1,222 lbf/inch 1,371 lbf/inch 1,232 lbf/inch

TABLE 9. Forced Deflection (Tension) Reaction Forces for Models with 48 Braid Wires(1)

It is interesting that the hose axial stiffness for the single, dual and triple layer FEMs are nearly 
identical at their maximum axial deflection limits. 

(1) 316 stainless steel (30,458 psi yield stress)
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The following figures show a 1.2-inch-long single braid layer corrugated hose FEM before and after being stretched 0.5 inch. The 
sectioned views show the braid wires contacting and squeezing against the corrugated tube crests.

Before Elongation

0.5” Elongation

Figure 16. Single braid layer before and after 0.5” axial deflection 
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Before Elongation

0.156” Elongation

Figure 17. Two braid layers – before and after 0.156” axial deflection
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Before Elongation

0.125” Elongation

Figure 18. Three braid layers – before and after 0.125” axial deflection
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Pressurized Hose Models
When a braided corrugated hose is internally pressurized, hose pressure forces are exerted in  
both the radial and axial directions. The axial hose pressure force is equal to the internal hose 
pressure multiplied by the hose flow area. Some analysts refer to the axial hose pressure force  
as the “plug” force.

As hose pressure increases, the axial hose force increases nonlinearly according to the formula: 

f = p * π r2 

 Where:

 f = axial hose pressure force (lbf)

 p = internal hose pressure (psi)

 r = corrugated tube inner radius (in)

The axial hose pressure force stretches the bellows corrugations and the braid wires, causing wires to 
squeeze or compress against the corrugated tube bellows crest surfaces. 

For the pressurized hose finite element models, the hose pressure and its corresponding axial plug 
force were increased until they failed to converge. The single braid layer model with four wires-per-
pick successfully attained 5,000 psi. The dual braid layer model with two wires-per-pick successfully 
attained 4,000 psi. The triple braid layer model with only one wire-per-pick successfully attained 
2,750 psi. For the same number of braid wires per finite element model, the single braid layer model 
performed the best, followed by the dual braid model and then by the triple braid layer model. 

Examination of the wire axial forces for each braid layer shows that the forces within the  
innermost braid layer are the highest, followed by those in the second and third braid layers.  

As expected, the axial hose stiffness for pressurized hoses is much higher than for  
unpressurized hoses.

The maximum FEM hose pressure limits for the single, dual and triple braid layer models are 
tabulated below.
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TABLE 10. Pressurized Hose FEM Deflection Results for Single and Multiple Braid Layers (1)  

FEM Description Single  Layer Two Layers Three Layers
 Total No. of braid wires 48 48 48
 No. of picks per braid layer 12 12 16
 No. of wires-per-pick 4 2 1
 No. of braid layers 1 2 3
Input(1) Hose internal pressure limit (psi) 5,000  4,000  2,750
 Hose axial plug force (lbf) 552  442  304 
Output Hose axial deflection (in) 0.083  0.159 0.078
  (@ 5,000 psi)  (@ 4,000 psi)  (@ 2,750 psi)
 Hose axial stiffness – pressurized (lbf/in) 6,651 2,780 3,897
  (@ 5,000 psi) (@ 4,000 psi) (@ 2750 psi)

The next three figures show the innermost braid wires compressing against the corrugated tube crest surfaces. Notice that the 
tube crests expanded or bulged axially relative to the troughs. 

(1) 316 stainless steel (42,100 psi yield stress)
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Figure 19. Single Braid Layer with 4 wires-per-pick @ 5,000 psi (& 552 plug lbf); total deformation = 0.083”
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Figure 20. Two braid layers with 2 wires-per-pick @ 4,000 psi (& 442 plug lbf); total deformation = 0.159”
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Figure 21. Three braid layers with 1 wire-per-pick @ 2,750 psi (& 304 plug lbf); total deformation = 0.078”
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The following figures show the FEM results for the pressurized hose models with one, two and three layers of braid wires.  
Notice that the braid wire axial forces for the multilayer braid models are substantially different for each braid layer.

 Total Deformation Maximum Principal Stress Axial Force

 Total Bending Moment Torsional Moment Total Shear Force

Figure 22. Single layer of braid wires – 5,000 psi – FEM results
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 Total Deformation Maximum Principal Stress Axial Force

 Total Bending Moment Torsional Moment Total Shear Force

Figure 23. Two layers of braid wires – 4,000 psi – FEM results
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 Total Deformation Maximum Principal Stress Axial Force

 Bending Moment Torsional Moment Total Shear Force

Figure 24. Three layers of braid wires – 2,750 psi – FEM results
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Figure 25. – Helix braid angle

Axial and Wire Tensile Forces within Individual Braid Layers

Hand Calculations – Tensile Forces Along Braid Wire Axes

A standard method for hand calculating the forces within braid wires is to assume the entire axial 
hose pressure plug force is carried entirely by the braid wires and that none of the axial force is 
carried or transmitted through the corrugated tube bellows.

Since braid wires are not oriented in-line with the hose axis, but are instead oriented at an angle.

The helix angle is shown in the following figure.

From Liquid Rocket Lines, Bellows, Flexible Hoses, and Filters(7)  

 “Multiple layers of braid may be used to achieve greater strength within wire-handling capacity  
 of the braider and without too great a sacrifice in flexibility. Because of the difficulty in obtaining  
 perfect load distribution between layers of braid, it is reasonable to assume that the second layer  
 is only 80-percent efficient.” 2 

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑤𝑤𝑤𝑤𝑎𝑎𝑎𝑎  =  
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑤𝑤𝑤𝑤_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑤𝑤𝑤𝑤𝑎𝑎𝑎𝑎

sin (𝑏𝑏𝑏𝑏𝑓𝑓𝑓𝑓𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏_ℎ𝑓𝑓𝑓𝑓𝑒𝑒𝑒𝑒𝑏𝑏𝑏𝑏𝑓𝑓𝑓𝑓𝑏𝑏𝑏𝑏𝑒𝑒𝑒𝑒_𝑏𝑏𝑏𝑏𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒𝑓𝑓𝑓𝑓)

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑐𝑐𝑐𝑐𝑎𝑎𝑎𝑎𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑐𝑐𝑐𝑐_𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏_𝑤𝑤𝑤𝑤𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤_𝑏𝑏𝑏𝑏𝑤𝑤𝑤𝑤𝑎𝑎𝑎𝑎𝑤𝑤𝑤𝑤𝑐𝑐𝑐𝑐_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤  =  𝑥𝑥𝑥𝑥 

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑐𝑐𝑐𝑐𝑎𝑎𝑎𝑎𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑐𝑐𝑐𝑐_𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏_𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤_𝑏𝑏𝑏𝑏𝑤𝑤𝑤𝑤𝑎𝑎𝑎𝑎𝑤𝑤𝑤𝑤𝑐𝑐𝑐𝑐_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤  =  0.8𝑥𝑥𝑥𝑥 

𝑏𝑏𝑏𝑏𝑎𝑎𝑎𝑎𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑏𝑏𝑏𝑏𝑎𝑎𝑎𝑎𝑓𝑓𝑓𝑓 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓_𝑓𝑓𝑓𝑓𝑏𝑏𝑏𝑏𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑐𝑐𝑐𝑐𝑎𝑎𝑎𝑎𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑐𝑐𝑐𝑐_𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏_2_𝑏𝑏𝑏𝑏𝑤𝑤𝑤𝑤𝑎𝑎𝑎𝑎𝑤𝑤𝑤𝑤𝑐𝑐𝑐𝑐_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑎𝑎𝑎𝑎  =  
𝑥𝑥𝑥𝑥 +  0.8𝑥𝑥𝑥𝑥

2
= 0.9𝑥𝑥𝑥𝑥 

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑤𝑤𝑤𝑤𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐ℎ_𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤  =  
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎

sin (𝑏𝑏𝑏𝑏𝑓𝑓𝑓𝑓𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏_ℎ𝑓𝑓𝑓𝑓𝑒𝑒𝑒𝑒𝑏𝑏𝑏𝑏𝑓𝑓𝑓𝑓𝑏𝑏𝑏𝑏𝑒𝑒𝑒𝑒_𝑏𝑏𝑏𝑏𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒𝑓𝑓𝑓𝑓)
 ∗  

1
𝑏𝑏𝑏𝑏𝑎𝑎𝑎𝑎𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑏𝑏𝑏𝑏𝑎𝑎𝑎𝑎𝑓𝑓𝑓𝑓 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓_𝑓𝑓𝑓𝑓𝑏𝑏𝑏𝑏𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑐𝑐𝑐𝑐𝑎𝑎𝑎𝑎𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑐𝑐𝑐𝑐_𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏_2_𝑏𝑏𝑏𝑏𝑤𝑤𝑤𝑤𝑎𝑎𝑎𝑎𝑤𝑤𝑤𝑤𝑐𝑐𝑐𝑐_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑎𝑎𝑎𝑎

 ∗  
1

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑏𝑏𝑏𝑏𝑒𝑒𝑒𝑒 𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓. 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑤𝑤𝑤𝑤𝑏𝑏𝑏𝑏𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑤𝑤𝑤𝑤

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑤𝑤𝑤𝑤𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐ℎ_𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤  =  
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Based on this assumption,

When there are two braid layers, the averaged force along each wire is assumed to be

For two braid layers, hand calculations (without performing FEA) result in an estimated average wire axial force of 14.88 lbf and 
an average wire tensile stress of 74,026 psi. 

ANSYS – Tensile Forces Along Braid Wire Axes

Note: The ANSYS Axial Force (X Axis) is along the helical braid axis for each individual wire.
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2
= 0.9𝑥𝑥𝑥𝑥 

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑤𝑤𝑤𝑤𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐ℎ_𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤  =  
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎

sin (𝑏𝑏𝑏𝑏𝑓𝑓𝑓𝑓𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏_ℎ𝑓𝑓𝑓𝑓𝑒𝑒𝑒𝑒𝑏𝑏𝑏𝑏𝑓𝑓𝑓𝑓𝑏𝑏𝑏𝑏𝑒𝑒𝑒𝑒_𝑏𝑏𝑏𝑏𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒𝑓𝑓𝑓𝑓)
 ∗  

1
𝑏𝑏𝑏𝑏𝑎𝑎𝑎𝑎𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑏𝑏𝑏𝑏𝑎𝑎𝑎𝑎𝑓𝑓𝑓𝑓 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓_𝑓𝑓𝑓𝑓𝑏𝑏𝑏𝑏𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑐𝑐𝑐𝑐𝑎𝑎𝑎𝑎𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑐𝑐𝑐𝑐_𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏_2_𝑏𝑏𝑏𝑏𝑤𝑤𝑤𝑤𝑎𝑎𝑎𝑎𝑤𝑤𝑤𝑤𝑐𝑐𝑐𝑐_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑎𝑎𝑎𝑎

 ∗  
1

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑏𝑏𝑏𝑏𝑒𝑒𝑒𝑒 𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓. 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑤𝑤𝑤𝑤𝑏𝑏𝑏𝑏𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑤𝑤𝑤𝑤

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑤𝑤𝑤𝑤𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐ℎ_𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤  =  
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎

sin (𝑏𝑏𝑏𝑏𝑓𝑓𝑓𝑓𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏_ℎ𝑓𝑓𝑓𝑓𝑒𝑒𝑒𝑒𝑏𝑏𝑏𝑏𝑓𝑓𝑓𝑓𝑏𝑏𝑏𝑏𝑒𝑒𝑒𝑒_𝑏𝑏𝑏𝑏𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒𝑓𝑓𝑓𝑓)
 ∗  

1
0.9

 ∗  
1

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑏𝑏𝑏𝑏𝑒𝑒𝑒𝑒 𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓. 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑤𝑤𝑤𝑤𝑏𝑏𝑏𝑏𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑤𝑤𝑤𝑤

𝑝𝑝𝑝𝑝𝑒𝑒𝑒𝑒𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎𝑤𝑤𝑤𝑤𝑐𝑐𝑐𝑐𝑤𝑤𝑤𝑤  =  2,750 
𝑒𝑒𝑒𝑒𝑏𝑏𝑏𝑏𝑓𝑓𝑓𝑓
𝑏𝑏𝑏𝑏𝑎𝑎𝑎𝑎2

 ∗  𝜋𝜋𝜋𝜋 ∗ (0.1875 𝑏𝑏𝑏𝑏𝑎𝑎𝑎𝑎)2  =  303.73 𝑒𝑒𝑒𝑒𝑏𝑏𝑏𝑏𝑓𝑓𝑓𝑓 

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑤𝑤𝑤𝑤𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐ℎ_𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑤𝑤𝑤𝑤𝑎𝑎𝑎𝑎  =  
303.73 𝑒𝑒𝑒𝑒𝑏𝑏𝑏𝑏𝑓𝑓𝑓𝑓
sin (43.4°)

 ∗  
1

0.9
 ∗  

1
48

 =  10.23 𝑒𝑒𝑒𝑒𝑏𝑏𝑏𝑏𝑓𝑓𝑓𝑓  

1 
 

Small corrections/modifications: 

Page 34 – Please change “axes” to “axis” on the very bottom line of the page 

Page 45 – Please insert the word “commercial” like this:  A commercial nominal 3/8” I.D. corrugated tube… 

Page 45 – Please change the line directly below the table to read:  T316L stainless steel (42,100 psi yield stress)[8] 

Page 51 – "ANSY" should be "ANSYS" on the very top line 

 

Technical error corrections: 

Page 34 – Please change 10.23 to 14.88 and 50,894 to 74,026 in the text towards the bottom of the page 

Page 38 – Please change 10.23 to 14.88 and 50,894 to 74,026 in Table 11 

Page 34 – Please swap the bottom three equations with these: 

 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  =  4,000 
𝑝𝑝𝑏𝑏𝑓𝑓
𝑖𝑖𝑖𝑖2  ∗  𝜋𝜋 ∗ (0.1875 𝑖𝑖𝑖𝑖)2  =  441.8 𝑝𝑝𝑏𝑏𝑓𝑓 

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎𝑓𝑓𝑎𝑎𝑎𝑎_𝑓𝑓𝑎𝑎𝑓𝑓ℎ_𝑤𝑤𝑤𝑤𝑓𝑓𝑓𝑓_𝑎𝑎𝑎𝑎𝑤𝑤𝑎𝑎  =  
441.8 𝑝𝑝𝑏𝑏𝑓𝑓
sin (43.4°)  ∗  1

0.9  ∗  1
48  =  14.88 𝑝𝑝𝑏𝑏𝑓𝑓  

𝑎𝑎𝑎𝑎𝑖𝑖𝑎𝑎𝑝𝑝 𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠𝑤𝑤𝑤𝑤𝑓𝑓𝑓𝑓  =  
14.88 𝑝𝑝𝑏𝑏𝑓𝑓

𝜋𝜋 ∗ (0.008 𝑖𝑖𝑖𝑖)2  =  74,026 𝑝𝑝𝑠𝑠𝑖𝑖 
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The ANSYS axial forces for the two braid layer hose FEM pressurized at 4,000 psi are displayed in the next three figures.  
Notice the large variation in wire forces between the inner and outer braid layers.

Figure 26. ANSYS axial forces - two braid layers
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Figure 27. ANSYS axial forces - outer braid layer
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Figure 28. ANSYS axial forces - inner braid layer

The highest axial forces occur at the wire tips where the braid wires are welded or bonded to the ends of the corrugated tube.

maximum ANSYS forcealong_wire   =   10.779lbf

maximum ANSYS axial stresswire =   10.779lbf       = 53,710 psi
π * (0.008 in) 2
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TABLE 11. Wire Tensile Force and Axial Stress – Two Braid Layers – 4,000 psi Hose Pressure

 Force along wire axis (lbf) Wire tensile stress (psi)
ANSYS FEM – at wire tips        10.779 (1)      53,710 (1) 

Hand calculation  14.88 74,026

(1) 316 stainless steel (42,100 psi yield stress)

The following table shows the pressurized hose FEM results for one, two and three braid layers. The 
maximum FEM hose pressure was determined by pushing the models to their limits. The maximum 
principal stresses within the corrugated tube as well as the braid wire tensile stresses are greater 
than the 316 stainless steel (42,100 psi) yield stress for all of the pressurized hose FEMs. For the 
single braid layer FEM, the wire tensile stress approaches the ultimate tensile strength. And the 
corrugated tube Maximum Principal stress exceeds the ultimate tensile stress by approximately  
2 percent.

No. of braid layers

Maximum FEM hose pressure (psi)  
& hose plug force (lbf)

Reaction force (lbf)

Hose axial deflection (in)

ANSYS Axial force (lbf) & wire  
tensile stress (psi) max/min

Max. Principal Stress @  
corrugated tube max/min (psi)

One Two Three

 5,000 4,000 2,750
    552    442    304

    547 445    306

 0.083 0.159 0.078

+10.657    53,000
 -  9.570    -47,600

  +10.799      53,710
  - 11.363     -56,500

+6.190        30,800
 -6.138       -30,500

                  85,600
                 -32,000

                      76,000
                     -14,700

                    61,300
                      -5,100

Table 12. FEM Results – Maximum Pressurized Hose Models (1)

(1) 316 stainless steel (42,100 psi yield stress & 84,100 psi ultimate tensile strength)
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No. of Braid Layers

Max. FEM Hose pressure (psi)

Braid layer location

ANSYS Axial Force max/min (lbf)

ANSYS Axial Force ~ typical  
value (lbf)

Braid wire tensile stress ~ typical 
value (psi)

One Two Three

Table 13. Axial Forces and Braid Wire Tensile Stresses within Individual Braid Layers (1)

(1) 316 stainless steel (42,100 psi yield stress)

 5,000 4,000 2,750

 First/Only Inner Outer Inner Middle Outer

+10.657
-  9.570

+10.799
-8.566

 +8.999
-11.363

+6.190
-6.138

+5.740
-1.790

+4.105
-4.413

 +7.60 +8.50 +2.30 +5.14 +0.20 +0.06

 37,800 42,300 11,400 25,500 1,000 300

The next table shows the variation in axial forces and braid wire tensile stresses between braid layers. Since the ANSYS axial 
forces spike at the ends of the hose assemblies, for discussion purposes, “typical” values was obtained by taking a random 
sample of values from the central portion of the hose models and averaging them. The typical braid wire axial stress for the 
5,000 psi single braid layer hose model was approximately 37,800 psi. For the 4,000 psi dual braid layer hose model, the 
typical braid wire stresses for the inner and outer braid layers were approximately 42,300 psi and 11,400 psi respectively. 
For the triple braid layer model with 2,750 psi, the typical braid wire axial stresses were 25,500 psi, 1,000 psi and 300 psi 
respectively for the inner, middle and outer braid layers. This data demonstrates the large variation of braid wire tensile 
stresses for hose models which contain multiple layers of braid wires.



Finite Element Analysis of Braided Corrugated Hoses with Multiple Layers  
of Individual Braid Wires Using an ANSYS Implicit Solver  

40

Early Termination (Non-convergence) of Deflection and Internally Pressurized Hose Finite Element Analysis Models
Hose finite element models sometimes failed to converge when high loads (forced deflection or internal hose pressure and axial 
plug pressure force) were applied to them. By default, the ANSYS force residual tolerance and the moment residual tolerance is 
automatically set to 0.5 percent. 

An analyst can graphically display Newton-Raphson residual forces by specifying the number of residual forces to display, prior 
to starting an analysis. If a model converges, the locations and intensities of the residual forces during the analysis will not be 
available for viewing. But when a model doesn’t converge, examination of the location of the residual forces can help identify 
why it didn’t converge. 

Since the surfaces where the forced deflection load is applied is very close to the free end of the corrugated tube, this often 
causes localized force residual hot spots nearby. 

The residual force hotspots are very shallow, penetrating only a very short distance into a mesh element. The residual force 
hotspots frequently occur at the extreme tips of the wire ends, within the last trough of the last corrugated tube, or at the last 
tube crest. Sometimes they also occur at the interface between consecutive beam elements or where beams cross.

Figure 29. Residual force hotspots at wire tip and between consecutive beam elements
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Figure 30. Residual force hotspots within corrugated tube trough

Figure 31. Residual force hotspots at the last corrugated tube crest
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Figure 32. Residual force hotspots between crossing wires 

It was hoped that by specifying a finer mesh in the zones where the Newton-Raphson residual force occurs, that those models 
could be pushed further. But specifying a finer mesh in those areas did not allow models to proceed further than previously.

Manually overriding and increasing the residual force and moment tolerances to 10 percent/5 percent respectively, often 
allowed those models to be pushed farther without sacrificing solution accuracy. A simple way to verify that changing these 
tolerances does not affect the accuracy of the FEM results is to compare the reaction forces with the input forces. If they match 
closely, this confirms that adjusting the residual tolerances did not affect the results’ accuracy.

In order to push some models even further, the residual force tolerance was intentionally turned off and the moment residual 
tolerance was set at 5 percent. After these models converged, the input and output forces were compared. Typically, this 
modeling technique was successful in obtaining convergence without sacrificing accuracy.

Even when the residual force tolerance is turned off and the moment residual force tolerance is set at 5 percent, the 
displacement residual tolerance is still being strictly enforced by ANSYS. This combination of enforcing the displacement 
residual tolerance and utilizing a 5 percent moment residual tolerance is usually sufficient to obtain convergence of hose models 
while maintaining accuracy. 

An additional benefit of overriding the residual force tolerance and the moment tolerance is that it reduces the number of 
iterations required for convergence and computer run times.
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Sensitivity of Deflection Models Compared to Pressurized Hose Models
Braided hose displacement models are easier for a FEA solver to analyze than pressurized hose 
models with an axial plug force. 

When a “displacement” is applied at the unconstrained, free end of the corrugated tube, all of 
the tube corrugations stretch to some extent. The corrugations nearest the application of the 
displacement stretch the most while corrugations closer to the fixed end stretch less. 

But when a force load is applied to surfaces near the free end of the corrugated tube to simulate 
a hose pressure plug-force, even though all the tube corrugations will eventually stretch to some 
degree, this concentrated plug force is basically applied locally. This concentrated force can cause 
convergence problems, exaggerating the residual force tolerance issue previously discussed.

When axial deflection is applied to the free end, the free end deflects directly along the hose axis. 
But when a hose plug (axial) force is applied it can cause the free end of the hose to wobble in 3D 
space as beam-to-beam and beam-to-corrugated-tube elements continuously change contact status 
throughout the simulation. Wobbling increases computer run time.

After a pressurized hose finite element model with a plug force converges, the axial deflection at the 
free end will be known. By removing the initial plug force and replacing it with the axial deflection 
from the previous plug force model, when this new deflection model converges, the resulting FEM 
reaction force will be equal to the previously applied plug force. Pressurized hose FEMs with radial 
pressure and deflection solve much faster than pressurized hose FEMs with radial pressure and a plug 
force.

Comments Regarding ANSYS HPC Packs
As an ANSYS Associate, the author had temporary access to ANSYS Professional and one HPC pack 
which can utilize up to 8 cores. The single HPC pack allowed four cores to be utilized on the author’s 
computer instead of two cores, reducing run times by approximately 50 percent. Anyone interested 
in analyzing braided corrugated hoses should consider purchasing at least two ANSYS HPC Packs 
(allowing 32 computer cores to be utilized) and as much computer memory as possible, on the fastest 
platform available with more cores than the number allowed by the HPC pack license. 

Selection of Dimensions for Non-proprietary Braided Corrugated Hose Models
The ANSYS Academic license is limited to 50 bodies, 300 faces (surfaces), 7,500 equations and 
32,000 nodes/elements. 

The author examined a Flexible Hose Engineering Design Guide(8) and decided to initially try 
creating and modeling a non-proprietary 3/8” I.D. corrugated hose with one layer of braid wires. The 
manufacturers’ hose guide shows that a nominal 3/8” I.D. stainless steel hose has an outside diameter 
of 0.590”. Using these diameters as a starting point, a U-shaped bellows profile was created using 
conventional drafting techniques. The author decided to keep things simple and to use fractional 
measurements whenever possible. A tube crest centerline-to-centerline distance of approximately 
1/8” (0.120”) was chosen. In combination with a wall thickness of 0.012”, this resulted in a visually 
acceptable corrugated tube U-shaped profile, as shown in Figure 1.
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As mentioned, a single layer of braid wires increases the outside diameter by at least four times the 
nominal diameter of the braid wires. Refer to Figure 5.  The flexible hose design guide(8) for a single 
layer of braid wires specifies an outside diameter of 0.640”.  Subtracting 0.590” from 0.640” and 
dividing by 4 gives an approximate braid wire diameter of 0.0125”. The author decided to model 
1/64th (~0.016”) diameter wires instead. 

The “helical length” is the axial distance which corresponds to 360° of helical rotation about the 
longitudinal axis. While creating the first and subsequent finite element models, a helical length of 
approximately 1.75” was used. – This helical length corresponds with a braid angle of approximately 
43°. A braided corrugated hose model with an axial length of approximately 1.75” was attempted. But 
this required more than 32,000 nodes and elements, exceeding the ANSYS Academic license limits. 
Reducing the hose length to 1.2” and experimenting with mesh sizing, an acceptable model size was 
eventually obtained. When additional layers of braid layers were added to the model, the mesh sizing 
was adjusted accordingly.

Finite Element Analysis Results of Single Layer Corrugated Hose vs. Manufacturer’s  
Operating Pressure Limits
Braided corrugated hose operating and burst pressures depend on a number of factors, including 
the number of braid wires within a braid layer and the total number of braid layers. A thin-walled 
corrugated tube without any braid wires can only sustain a small amount of internal hose pressure 
before deforming excessively due to a combination of axial elongation and column buckling instability 
(squirm).

A U-shaped, corrugated tube with a 0.590” outside diameter can physically accommodate 24 picks of 
braid wires with five 0.016” diameter braid-wires-per-pick. For this hose size, there is room for 120 
braid wires per braid layer. But due to ANSYS Academic license restrictions, only 48 wires could be 
included within the finite element models.

As mentioned, analyzing a pressurized hose is more difficult than analyzing non-pressurized axial 
hose elongation. So the real test for a finite element analysis solver is how well it can analyze a 
pressurized braided corrugated hose model. Since the manufacturer’s “normal burst pressure” is 
listed as 5,800 psi, different modeling parameters and techniques were implemented to see how far 
an ANSYS implicit analysis could be pushed while striving to attain 5,800 psi.

It is important to keep in mind that the ANSYS Academic finite element models only contain 40 
percent of the full complement of braid wires on a nominal 3/8” I.D. commercial hose with one layer 
of braid wires. Even with this reduced number of braid wires, the ANSYS Academic single braid layer 
hose finite element analysis model successfully attains 5,000 psi before 1) either the wires pass 
through the corrugated tube wall thickness or 2) the corrugated tube mesh collapses or implodes or 3) 
the analysis stops because the ANSYS residual forces/moments are exceeded. 
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The following table lists the manufacturer’s (8) maximum working pressure, maximum test pressure, 
and burst pressure for a nominal 3/8” I.D. braided stainless steel corrugated hose with a single layer 
of 120 stainless steel braid wires. (24 picks x 5 wires-per-pick = 120 wires.)

Hose engineering guide(8) 0.375 0.59 0 80 120 N/A -
  0.64 (120) 1,450 2,175 N/A 5,800
FEM – 1 braid layer 0.375 0.654 48 N/A N/A 5,000 N/A

Hose
I.D.

Hose
O.D.

Total  
No. of 
Braid 
Wires

Maximum 
Working 
Pressure 

(psi)

Maximum 
Test

Pressure 
(psi)

Maximum 
FEM  

Pressure 
Limit 
(psi)

Burst  
Pressure 

(psi)

Table 14. Engineering Guide Max. Working Pressure Comparison with Max. Pressure FEA Results

T316L stainless steel (42,100 psi yield stress)(8)

A commercial nominal 3/8” I.D. corrugated tube is rated at 80 psi. Adding a single braid layer 
increases the maximum working pressure to 1,450 psi. This increases the maximum working pressure 
by a factor of 18:1.

The maximum working pressure specification for a commercially rated corrugated hose with 120 braid 
wires is 1,450 psi(8). Therefore, while performing finite element analysis, the FEA solver would need 
to be able to attain 1,450 psi without braid wires passing-through the corrugated tube or braid wires 
passing-through other wires. 

For the finite element analysis model with a single layer of 48 braid wires, the ANSYS implicit 
solver attained 5,000 psi without any wire penetration issues. (5,000 psi is 3.4 times the 1,450 psi 
“maximum working pressure” specification).
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Even though not a direct comparison (48 wires vs. 120 braid wires), this demonstrates that the ANSYS 
implicit solver is capable of analyzing a commercial braided corrugated hose with a nominal 3/8” I.D. 
and one layer of (48) braid wires.

Figure 33. Braid weave densities with 48 and 120 braid wires per layer

The axial deformation and hose pressure limits for finite element models with one, two, and three 
layers of braid wires is summarized in the following table. 

FEM Description One  Braid Layer Two Braid Layers Three Braid Layers
 Total No. of braid wires 48 48 48
 No. of picks per braid layer 12 12 16
 Wires-per-pick 4 2 1
 No. of braid layers 1 2 3
Input(1) Hose pressure limit (psi) 5,000  4,000  2,750
Output Total deformation (in) 0.083 0.159 0.078
Input (2) Hose elongation limits (in) 0.50 + 0.156 0.125

Table 15. Summary of FEM Hose Pressure and Axial Deflection Limits  

(1) stainless steel @ 42,100 psi yield stress
(2) stainless steel @ 30,458 psi yield stress
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Mesh Quality Discussion
Quadratic mesh elements are less sensitive to element distortion than linear elements. Quadratic 
elements represent curved edges and surfaces more accurately and are less sensitive to element 
distortion than linear elements. Quadratic elements allow mid-side nodes to be turned on or off  
by the analyst.

Since the corrugated tube crest and trough geometries have curved edges and surfaces, a higher level 
of modeling accuracy could possibly be attained by using quadratic elements with mid-side nodes 
instead of using linear elements. 

Due to ANSYS Academic software license restrictions (32,000 nodes maximum), linear mesh elements 
were used for the corrugated tube mesh and the mid-side node analysis option was turned off. One 
advantage of turning the mid-side nodes off is that it reduces the computer time required for analysis. 
Using linear elements instead of quadratic elements also reduces computer run time. It is possible 
that the modeling limit of 5,000 psi hose pressure could possibly be pushed further by increasing the 
number of mesh elements within the corrugated tube and by using quadratic elements with the mid-
side node option turned on. But doing so could increase analysis time.

Tri-axial Deflection FEM Results
A single braid layer model was evaluated to test ANSYS’ robustness for handling multi-axis braided 
corrugated hose deflection.  The tri-axial ANSYS hose FEM successfully converged without excessive 
wire penetration.

  FEM Input  FEM Output(1)

 Delta X Delta Y Delta Z Total
 -0.093 -0.093 0.250 0.286

Deflection (in)

Figure 34. Tri-axial deflection – single braid layer –  front and side views

TABLE 16. Deflection along X, Y and Z axes

(1) stainless steel @ 30,458 psi yield stress
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Figure 35. Vertical tip deflection – single braid layer – front and side views

Severe Tip Deflection – FEM Results
A single braid layer model (stainless steel @30,485 psi yield stress) was analyzed to test ANSYS’ 
robustness for handling severe tip deflection. The free end of the hose was deflected 0.188” vertically 
downward. The FEM successfully converged without excessive wire penetration.
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Figure 36. Severe tip deflection FEM – single braid layer – maximum principal stress

This figure shows the corrugated tube maximum principal stress and the corrugated tube deformation 
resulting from a large vertical tip displacement.
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Figure 37. Individual braid wires flexing – vertical tip deflection FEM 

The next figure shows the braid wires flexing. This level of detail would not be possible if picks of 
wires had been modeled as ribbons with composite material properties.
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ANSYS FEM Discussion and Conclusions
ANSYS implicit software successfully analyzes braided corrugated hoses with multiple layers of 
individual braid wires where each wire is modeled as an individual component or structure. As the 
hose simulation progresses, each braid wire slides, stretches and flexes, changing back-and-forth 
between contact and non-contact. This is an extremely complex and challenging contact modeling 
simulation. The ANSYS finite element model results are extremely detailed, providing insight into the 
underlying physics of how internally pressurized braided corrugated hose components stretch and 
deform.  A summary of the modeling highlights is listed below.

1) Axial hose deflection FEMs

 Single, dual and triple braid layer finite element analysis models successfully sustained  
 large axial deflection. The single braid layer hose model stretched into the elastic-plastic  
 material properties range.  

2) Tri-axial hose deflection FEM

 A single braid layer finite element analysis model successfully sustained large tri-axial deflection. 

3) Tip deflection FEM 

 A single braid layer finite element analysis model successfully sustained large tip deflection. 

4) Pressurized hose FEMs

 Single, dual and triple braid layer pressurized hose finite element analysis models successfully  
 converged. All of these models progressed far into the elastic-plastic material properties range.  
 For the single braid layer FEM, the braid wire tensile stresses were elastic-plastic and the  
 corrugated tube stresses exceeded the ultimate tensile strength by approximately 2 percent.  

 Even though the single braid layer finite element hose model contains only 40 percent of the full  
 complement of braid wires used on a commercial braided corrugated hose with a 3/8” I.D. hose  
 and one layer of braid wires, the ANSYS model successfully attained 5,000 psi, which is 3.4 times  
 the hose manufacturer’s rated maximum working  pressure specification.  

 Important Findings 

 a)  At high pressure, the corrugated tube crests deflect or bulge substantially in the axial direction  
  compared to the tube troughs. 
 
 b) The innermost braid layer carries a substantially larger portion of the total braid wire axial  
  forces than outlying braid layers. There is also a wide variation of wire tensile forces within any  
  braid layer.

This white paper demonstrates ANSYS implicit software is robust for analyzing braided metallic 
corrugated hoses with multiple layers of individual metallic braid wires.
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